Search results for " 46B85"
showing 2 items of 2 documents
SPACES OF SMALL METRIC COTYPE
2010
Naor and Mendel's metric cotype extends the notion of the Rademacher cotype of a Banach space to all metric spaces. Every Banach space has metric cotype at least 2. We show that any metric space that is bi-Lipschitz equivalent to an ultrametric space has infinimal metric cotype 1. We discuss the invariance of metric cotype inequalities under snowflaking mappings and Gromov-Hausdorff limits, and use these facts to establish a partial converse of the main result.
Isometric embeddings of snowflakes into finite-dimensional Banach spaces
2016
We consider a general notion of snowflake of a metric space by composing the distance by a nontrivial concave function. We prove that a snowflake of a metric space $X$ isometrically embeds into some finite-dimensional normed space if and only if $X$ is finite. In the case of power functions we give a uniform bound on the cardinality of $X$ depending only on the power exponent and the dimension of the vector space.